Rad23 escapes degradation because it lacks a proteasome initiation region
نویسندگان
چکیده
منابع مشابه
Rad23 escapes degradation because it lacks a proteasome initiation region
Rad23 is an adaptor protein that binds to both ubiquitinated substrates and to the proteasome. Despite its association with the proteasome, Rad23 escapes degradation. Here we show that Rad23 remains stable because it lacks an effective initiation region at which the proteasome can engage the protein and unfold it. Rad23 contains several internal, unstructured loops, but these are too short to a...
متن کاملRad23 stabilizes Rad4 from degradation by the Ub/proteasome pathway.
Rad23 protein interacts with the nucleotide excision-repair (NER) factor Rad4, and the dimer can bind damaged DNA. Rad23 also binds ubiquitinated proteins and promotes their degradation by the proteasome. Rad23/proteasome interaction is required for efficient NER, although the specific role of the Ub/proteasome system in DNA repair is unclear. We report that the availability of Rad4 contributes...
متن کاملThe UBA2 domain functions as an intrinsic stabilization signal that protects Rad23 from proteasomal degradation.
The proteasome-interacting protein Rad23 is a long-lived protein. Interaction between Rad23 and the proteasome is required for Rad23's functions in nucleotide excision repair and ubiquitin-dependent degradation. Here, we show that the ubiquitin-associated (UBA)-2 domain of yeast Rad23 is a cis-acting, transferable stabilization signal that protects Rad23 from proteasomal degradation. Disruption...
متن کاملRad23 promotes the targeting of proteolytic substrates to the proteasome.
Rad23 contains a ubiquitin-like domain (UbL(R23)) that interacts with catalytically active proteasomes and two ubiquitin (Ub)-associated (UBA) sequences that bind Ub. The UBA domains can bind Ub in vitro, although the significance of this interaction in vivo is poorly understood. Rad23 can interfere with the assembly of multi-Ub chains in vitro, and high-level expression caused stabilization of...
متن کاملTrypanosome ornithine decarboxylase is stable because it lacks sequences found in the carboxyl terminus of the mouse enzyme which target the latter for intracellular degradation.
Ornithine decarboxylase (ODC) is a key enzyme in polyamine biosynthesis. Mouse ODC is rapidly degraded in mouse cells, whereas ODC within Trypanosoma brucei, a protozoan parasite infesting cattle, is stable. We have expressed cloned ODC genes of both T. brucei and mouse in ODC-deficient Chinese hamster ovary (CHO) cells. The T. brucei enzyme is stable, whereas the mouse ODC similarly expressed ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nature Communications
سال: 2011
ISSN: 2041-1723
DOI: 10.1038/ncomms1194